134 research outputs found

    Solar radiation forecasting, accounting for daily variability

    Get PDF
    Radiation forecast accounting for daily and instantaneous variability was pursued by means of a new bi-parametric statistical model that builds on a model previously proposed by the same authors. The statistical model is developed with direct reference to the Liu-Jordan clear sky theoretical expression but is not bound by a specific clear sky model; it accounts separately for the mean daily variability and for the variation of solar irradiance during the day by means of two corrective parameters. This new proposal allows for a better understanding of the physical phenomena and improves the effectiveness of statistical characterization and subsequent simulation of the introduced parameters to generate a synthetic solar irradiance time series. Furthermore, the analysis of the experimental distributions of the two parameters’ data was developed, obtaining opportune fittings by means of parametric analytical distributions or mixtures of more than one distribution. Finally, the model was further improved toward the inclusion of weather prediction information in the solar irradiance forecasting stage, from the perspective of overcoming the limitations of purely statistical approaches and implementing a new tool in the frame of solar irradiance prediction accounting for weather predictions over different time horizons

    NEW APPROACHES FOR VERY SHORT-TERM STEADY-STATE ANALYSIS OF AN ELECTRICAL DISTRIBUTION SYSTEM WITH WIND FARMS

    Get PDF
    Distribution networks are undergoing radical changes due to the high level of penetration of dispersed generation. Dispersed generation systems require particular attention due to their incorporation of uncertain energy sources, such as wind farms, and due to the impacts that such sources have on the planning and operation of distribution networks. In particular, the foreseeable, extensive use of wind turbine generator units in the future requires that distribution system engineers properly account for their impacts on the system. Many new technical considerations must be addressed, including protection coordination, steady-state analysis, and power quality issues. This paper deals with the very short-term, steady-state analysis of a distribution system with wind farms, for which the time horizon of interest ranges from one hour to a few hours ahead. Several wind-forecasting methods are presented in order to obtain reliable input data for the steady-state analysis. Both deterministic and probabilistic methods were considered and used in performing deterministic and probabilistic load-flow analyses. Numerical applications on a 17-bus, medium-voltage, electrical distribution system with various wind farms connected at different busbars are presented and discusse

    Estimating Wind Farm Transformers Rating through Lifetime Characterization Based on Stochastic Modeling of Wind Power

    Get PDF
    This paper deals with the problem of the optimal rating of mineral-oil-immersed transformers in large wind farms. The optimal rating is derived based on the probabilistic analyses of wind power generation through the Ornstein–Uhlenbeck stochastic process and on thermal model of the transformer through the integration of stochastic differential equations. These analyses allow the stochastic characterization of lifetime reduction of the transformer and then its optimal rating through a simple closed form. The numerical application highlights the effectiveness and easy applicability of the proposed methodology. The proposed methodology allows deriving the rating of transformers which better fits the specific peculiarities of wind power generation. Compared to the conventional approaches, the proposed method can better adapt the transformer size to the intermittence and variability of the power generated by wind farms, thus overcoming the often-recognized reduced lifetime

    Operation of Plug-In Electric Vehicles for Voltage Balancing in Unbalanced Microgrids

    Get PDF
    The widespread use of distributed energy resources in the future electric distribution systems represents both a challenge and an opportunity for all the Smart Grid operators. Among these resources, plug-in electric vehicles are expected to play a significant role not only for the economic and environmental benefits they involve but also for the ancillary services they can provide to the supplying grid. This chapter deals with real-time operation of unbalanced microgrids including plug-in electric vehicles. The operation is achieved by means of an optimal control strategy aimed at minimizing the costs sustained for the energy provision while meeting various technical constraints. Among the technical constraints, the optimal control allows guaranteeing the satisfaction of power quality requirements such as the containment of slow voltage variations and the unbalance factors. Case studies are investigated in order to show the feasibility and the effectiveness of the proposed approach

    Battery Energy Storage Sizing When Time of Use Pricing Is Applied

    Get PDF
    Battery energy storage systems (BESSs) are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs

    decision theory criteria for the planning of distributed energy storage systems in the presence of uncertainties

    Get PDF
    This paper deals with the use of distributed energy storage systems in microgrids, and proposes a planning method which accounts for the uncertainties of load and distributed generation. Objectives of the planning method are the reduction of the energy costs, while providing the supply of ancillary services as a technical support to the network. The energy costs are evaluated considering a hourly varying pricing scheme and optimizing the storage systems charging/discharging stages. The technical support is devoted to the restraint of bus voltage amplitudes, and of network components' currents/powers within admissible ranges. The input data uncertainties are managed through three decision theory criteria (i.e., the minimization of expected costs; an approach based on the weighted regret felt by the design engineer; and a stability area criterion), which allow considering the multiple design alternatives and futures (i.e., possible values of uncertain input data) in an accurate and feasible way. The design alternatives refer to the size and location of the distributed storage systems, while each future is associated with a different level of load demand and power production of distributed generation over the whole planning period. The results of numerical applications are reported and discussed with reference to a Cigre test network

    Chemically stable Au nanorods as probes for sensitive surface enhanced scattering (SERS) analysis of blue BIC ballpoint pens

    Get PDF
    Au nanorods were used as an alternative to commonly used Ag nanoparticles as Surface Enhanced Raman Scattering (SERS) probes for identification of dye composition of blue BIC ballpoint pens. When used in combination with Thin Layer Chromatography (TLC), Au nanorod colloids allowed identification of the major dye components of the BIC pen ink, otherwise not identifiable by normal Raman spectroscopy. Thanks to their enhanced chemical stability compared to Ag colloids, Au nanorods provided stable and reproducible SERS signals and allowed easy identification of phthalocyanine and triarylene dyes in the pen ink mixture. These findings were supported by FTIR and MALDI analyses, also performed on the pen ink. Furthermore, the self-assembly of Au nanorods into large area ordered superstructures allowed identification of BIC pen traces. SERS spectra of good intensity and high reproducibility were obtained using Au nanorod vertical arrays, due to the high density of hot spots and morphological reproducibility of these superstructures. These results open the way to the employment of SERS for fast screening analysis and for quantitative analysis of pens and faded pens which are relevant for the fields of forensic and art conservation sciences

    IN "POLPO ... SITION" E ALTRI BREVI RACCONTI

    Get PDF
    Assalito dalla felicitĂ  corsi al mare, guardai l’acqua e fui preso da una forza, non mia, non umana che mi trascinĂČ in acqua. LĂŹ venni rapito da fantastiche sensazioni, l’adrenalina salĂŹ a mille, vidi un enorme creatura che suscitĂČ in me delle emozioni mai provate prima, si era avvicinata talmente tanto che stava per toccarmi e, appena lo fece, il mio corpo si illuminĂČ magicamente, le mie mani iniziarono pian piano ad assottigliarsi, il mio petto diventava sempre piĂč piccolo e tondo e da lĂŹ a poco, ero diventato un polpo

    Renewable Energy Communities as an Enabling Framework to Boost Flexibility and Promote the Energy Transition

    No full text
    Undelayable environmental requirements and the energy crisis following the pandemic, further increased by international contingencies, have evidenced the need to push forward with the energy transition and intensify the use of renewable energy to satisfy energy needs, with more flexible, resilient, and sustainable energy being required [...
    • 

    corecore